How do you find the antiderivative of #int sin^2xcos^2x dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Narad T. Jan 11, 2017 The answer is #=x/8-1/32sin4x+C# Explanation: #sin2x=2sinxcosx# So, #sin^2xcos^2x=1/4sin^2 (2x)# #cos4x=1-2sin^2(2x)# #sin^2(2x)=1/2(1-cos(4x))# So, #intsin^2xcos^2xdx=1/8int(1-cos4x)dx# #=1/8(x-1/4sin4x)+C# #=x/8-1/32sin4x+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1407 views around the world You can reuse this answer Creative Commons License