How do you find the antiderivative of #int sin^3xcosxdx#?

2 Answers
Nov 23, 2016

#" "intsin^3xcosxdx" "=1/4sin^4x+C #

Explanation:

no need for substitution here if you recognise that

#y=sin^nx=>(dy)/(dx)=nsin^(n-1)xcosx" " #using the chain rule

so#" "intsin^3xcosxdx" "#suggests a function of the type

#y=sin^4x#

lets check this by differentiating.

#u=sinx=>(du)/(dx)=cosx#

#y=u^4=>(dy)/(dx)=4u^3#

#(dy)/(dx)=4u^3cosx=4sin^3xcosx#

#" "intsin^3xcosxdx" "=1/4sin^4x+C #

Nov 23, 2016

#sin^4x/4+C#.

Explanation:

Since you have a cosine terms hanging around some sine terms, it might be helpful to try the substitution #u=sinx#, #du=cosxdx#.

Using this substitution, #intsin^3xcosxdx=intu^3du#.

#intu^3du=u^4/4+C=sin^4x/4+C#.