How do you find the antiderivative of #int tanx dx#?

1 Answer
Oct 10, 2016

#lnabssecx+C" "# or #" "-lnabscosx+C#

Explanation:

Rewrite #tanx# using its form in #sinx# and #cosx#:

#inttanxdx=intsinx/cosxdx#

Now, we can use the substitution #u=cosx#. This implies that #du=-sinxdx#.

#intsinx/cosx=-int(-sinx)/cosxdx=-int(du)/u#

This is a common and valuable integral to recognize:

#-int(du)/u=-lnabs(u)+C#

Back-substituting with #u=cosx#:

#-lnabsu+C=-lnabscosx+C#

Note that this can be rewritten using logarithm rules, with the negative on the outside being brought into the logarithm as a #-1# power.

#-lnabscosx+C=lnabs((cosx)^-1)+C=lnabssecx+C#