How do you find the antiderivative of #int x^2/sqrt(1-x^3)dx#?

1 Answer
Jan 14, 2017

#-2/3sqrt(1-x^3)+C#

Explanation:

Rewriting the function:

#I=intx^2/sqrt(1-x^3)dx=intx^2(1-x^3)^(-1/2)dx#

To deal with the #-1//2# power, let #u=1-x^3#. This implies that #du=-3x^2color(white).dx#. Rewriting the integral:

#I=-1/3int(1-x^3)^(-1/2)(-3x^2color(white).dx)=-1/3intu^(-1/2)color(white).du#

Now use the rule #intu^ncolor(white).du=u^(n+1)/(n+1)#:

#I=-1/3(u^(1/2)/(1/2))=-2/3sqrtu=-2/3sqrt(1-x^3)+C#