How do you find the antiderivative of #int x^3/sqrt(4x^2-1)dx#?
1 Answer
Nov 5, 2016
Explanation:
#I=intx^3/sqrt(4x^2-1)dx#
Let
#I=1/8int(x^2(8x))/sqrt(4x^2-1)dx#
Substituting in our
#I=1/8int((u+1)/4)/sqrtudu=1/32int(u+1)/sqrtudu#
#I=1/32int(u^(1/2)+u^(-1/2))du#
Now integrating using the power rule for integration:
#I=1/32(u^(3/2)/(3/2)+u^(1/2)/(1/2))=1/32(2/3u^(3/2)+2u^(1/2))#
#I=1/48u^(3/2)+1/16u^(1/2)=(u^(3/2)+3u^(1/2))/48=(u^(1/2)(u+3))/48#
Now since
#I=(sqrt(4x^2-1)(4x^2-1+3))/48=(sqrt(4x^2-1)(4x^2+2))/48#
So:
#I=(sqrt(4x^2-1)(2x^2+1))/24+C#