How do you find the antiderivative of #sqrt cosx#?
1 Answer
Oct 21, 2016
Explanation:
#I=intsqrtcos(x)dx#
Using the cosine double angle formula
#I=sqrt(1-2sin^2(x/2))dx#
Letting
#I=2intsqrt(1-2sin^2(u))du#
This is a special integral, namely the incomplete elliptic of the second kind
So, here, we see that:
#I=2E(u|2)+C=2E(x/2 | 2)+C#