How do you find the antiderivative of # x * cos^2 (x)#?

2 Answers
Jul 7, 2016

#x^2/4+(xsin2x)/4+(cos2x)/8+C.#

Explanation:

Let #I=intxcos^2xdx.# We use Trgo. Identity # : cos^2x=(1+cos2x)/2#

#:. I=int{x(1+cos2x)}/2dx =1/2intxdx+1/2intxcos2xdx=x^2/4+1/2I_1,#

where, #I_1=intxcos2xdx,# & to evaluate this, we are going to use the Rule of Integration by Parts , given by,

#intuvdx=uintvdx-int[(du)/dx*intvdx]dx.#

We, in this Rule, will take #u=x#, and, #v=cos2x#. Hence,

#I_1=x*intcos2xdx-int[d/dx(x)*intcos2xdx]dx,#

#=x*(sin2x)/2-int1*(sin2x)/2dx,=x/2*sin2x-1/2*(-cos2x)/2.#

#:. I_1=x/2*sin2x+(cos2x)/4.#

Therefore, #I=x^2/4+1/2{(xsin2x)/2+(cos2x)/4}#
#=x^2/4+(xsin2x)/4+(cos2x)/8+C.#

Jul 7, 2016

#int x*cos^2 x d x=(2x(sin2x+x)+cos2x)/8+C#

Explanation:

#int x*cos^2 x d x=?#

#cos 2x=cos^2x-sin^2x" ; so "sin^2 x=1-cos^2x#

#cos2x=cos^2 x-(1-cos^2 x)#

#cos2x=cos^2 x-1+cos^2 x=2cos^2 x-1#

#cos2x+1=2cos^2 x#

#cos^2 x=1/2(cos2x+1)#

#int x* cos^2 x d x=int x*1/2(cos2x+1) d x#

#int x*cos^2 x d x=1/2 int x*(cos2x+1) d x#

#int x*cos^2 x d x=1/2[color(red)(int x*cos2x* d x)+color(green)(int x* d x)]#

#color(red)(int x*cos2x*d x)=?" ; "#

#x=u" ; "d x=d u#

#cos 2x d x=d v" ; " v=1/2 sin 2x#

#color(red)(int x*cos2 x d x=u*v-int v*d u)#

#color(red)(int x*cos2 x d x=1/2*x*sin 2x-int 1/2*sin2x d x#

#color(red)(int x*cos2 x d x=1/2x*sin 2x+1/2*1/2*cos2x#
#color(red)(int x*cos2 x d x=1/2 x*sin2x+1/4cos2x#

#color(green)(int x*d x=?)" ; "#

#color(green)(int x*d x=1/2 x^2)#

#int x*cos^2 x d x=1/2[1/2x*sin2x+1/4cos2x+1/2x^2]#

#int x*cos^2 x d x=1/4x*sin2x+1/8*cos2x+1/4*x^2#

#int x*cos^2 x d x=(2xsin2x+2x^2+cos2x)/8+C#

#int x*cos^2 x d x=(2x(sin2x+x)+cos2x)/8+C#