How do you find the asymptotes for #(x^4-3x^3-21x^2+43x+60)/(x^4-6x^3+x^2+24x-20)#?
1 Answer
Horizontal asymptote (left and right):
Vertical asymptotes at
Hole at
Explanation:
Let's attempt to factorise the numerator and denominator first.
Numerator
Substituting
#1+3-21-43+60 = 0#
So
#x^4-3x^3-21x^2+43x+60 = (x+1)(x^3-4x^2-17x+60)#
Substituting
#27-36-51+60 = 0#
So
#x^3-4x^2-17x+60=(x-3)(x^2-x-20) = (x-3)(x-5)(x+4)#
In summary:
#x^4-3x^3-21x^2+43x+60 = (x+1)(x-3)(x-5)(x+4)#
Denominator
Substituting
#1-6+1+24-20 = 0#
So
#x^4-6x^3+x^2+24x-20 = (x-1)(x^3-5x^2-4x+20)#
The remaining cubic factors by grouping:
#x^3-5x^2-4x+20#
#=(x^3-5x^2)-(4x-20)#
#=x^2(x-5)-4(x-5)#
#=(x^2-4)(x-5)#
#=(x-2)(x+2)(x-5)#
In summary:
#x^4-6x^3+x^2+24x-20 = (x-1)(x-2)(x+2)(x-5)#
Together
#(x^4-3x^3-21x^2+43x+60)/(x^4-6x^3+x^2+24x-20)#
#=((x+1)(x-3)color(red)(cancel(color(black)((x-5))))(x+4))/((x-1)(x-2)(x+2)color(red)(cancel(color(black)((x-5)))))#
#=((x+1)(x-3)(x+4))/((x-1)(x-2)(x+2))#
with exclusion
Looking at the leading terms of the numerator and denominator, the degrees and coefficients are identical, so there is a horizontal asymptote (left and right):
When
Substituting the value
graph{(x^4-3x^3-21x^2+43x+60)/(x^4-6x^3+x^2+24x-20) [-41.83, 38.17, -10.24, 29.76]}