How do you find the average rate of change of f(x)=cot x over the interval [pi/6, pi/2]?

1 Answer
Mar 1, 2018

-9/(pisqrt(3))

Explanation:

The average rate of change of a function over the closed interval [a,b] is given by:

(f(b)-f(a))/(b-a)

Here, f=cotx,a=pi/6,b=pi/2

Inputting:

(cot(pi/2)-cot(pi/6))/(pi/2-pi/6)

(0-3/sqrt(3))/(pi/3)

(-3/sqrt(3))/(pi/3)

-9/(pisqrt(3))

The graph helps us understand the above:

graph{cotx [-3.408, 4.387, -1.574, 2.32]}