How do you find the center and vertices and sketch the hyperbola #4y^2-x^2=1#?

1 Answer
Jan 31, 2017

See explanation and graph.

Explanation:

TIn the standard form the equation is

#y^2/(1/2)^2-x^2/1^1=1#

Center C is the origin (0, 0)

Major axis : y-axis, x = 0.

Transverse axis : x-axis, y = 0.

Semi major axis #a = 1/2#

Semi transverse axis #b = 1#

Eccentricity : #e =sqrt(1+a^2/b^2)=sqrt5/2#

Vertices A and A' on major axis x = 0 : #(0, +-a) = (0, +-1/2)#-

Foci S and S' on major axis : (#0, +-ae)=(0, +-sqrt5)#

The asymptotes : #4y^2-x^2=0#, giving #y=+-x/sqrt2#.

The Socratic graph is inserted.

graph{(4y^2-x^2-1)(4y^2-x^2)((y-sqrt5)^2+x^2-.01)((y+sqrt5)^2+x^2-.01)((y-.5)^2+x^2-.01)((y+.5)^2+x^2-.01)=0 [-5, 5, -2.5, 2.5]}