How do you find the complex roots of #4m^4+17m^2+4=0#?
1 Answer
Nov 26, 2016
The roots are:
#m = +-1/2i" "# and#" "m = +-2i#
Explanation:
#4m^4+17m^2+4 = 0#
Treating this as a quadratic in
First find a pair of factors of
The pair
Use this pair to split the middle term, then factor by grouping:
#4m^4+17m^2+4 = 4m^4+16m^2+m^2+4#
#color(white)(4m^4+17m^2+4) = (4m^4+16m^2)+(m^2+4)#
#color(white)(4m^4+17m^2+4) = 4m^2(m^2+4)+1(m^2+4)#
#color(white)(4m^4+17m^2+4) = (4m^2+1)(m^2+4)#
#color(white)(4m^4+17m^2+4) = ((2m)^2-i^2)(m^2-(2i)^2)#
#color(white)(4m^4+17m^2+4) = (2m-i)(2m+i)(m-2i)(m+2i)#
Hence zeros:
#m = +-1/2i" "# and#" "m = +-2i#