How do you find the complex roots of #n^3-9n=0#?
1 Answer
Sep 25, 2017
Explanation:
#n^3-9n=0#
#rArrn(n^2-9)=0#
#rArrn(n-3)(n+3)=0#
#"equating each factor to zero and solving for n"#
#rArrn=0#
#n-3=0rArrn=3#
#n+3=-rArrn=-3#
#"the roots "n=0,n=3,n=-3" are real"#