We say that #x=a# is a critical point of the function #f(x)# if #f(a)# exists and if either #f'(a)=0# or #f'(a)# does not exist.
Observe that #f(x)=xsqrt(2x+1)# if #x < -1/2#
Let us therefore workout #f'(x)# using product rule.
#f'(x)=x xx1/(2sqrt(2x+1))xx2+1xxsqrt(2x+1)#
= #x/(sqrt(2x+1))+sqrt(2x+1)#
= #(x+2x+1)/(sqrt(2x+1))=(3x+1)/(sqrt(2x+1))#
Now #f'(x)=0#, when #x=-1/3#. Also #f'(x)# is not defined for #x <= -1/2#, hence #x=-1/2# is a critical point.
Further #f''(x)=(sqrt(2x+1)xx3-(3x+1)xx(1/sqrt(2x+1)))/(2x+1)#
= #(6x+3-3x-1)/((2x+1)sqrt(2x+1))=(3x+2)/((2x+1)sqrt(2x+1)#
and at #x=-1/3#, #f''(x) > 0# and hence we have a minima at #x=-1/3#, where #f(x)=-1/(3sqrt3)#.
graph{xsqrt(2x+1) [-4.08, 5.92, -0.86, 4.14]}