How do you find the definite integral of #5xcos(x^2)dx# from #[0, sqrtpi]#?
1 Answer
Jan 14, 2017
Explanation:
We have the integral:
#I=int_0^sqrtpi5xcos(x^2)dx#
To deal with the inside of the cosine function, let
#I=5/2int_0^sqrtpi2xcos(x^2)dx=5/2int_0^sqrtpiunderbrace(cos(x^2))_(cos(u))overbrace((2xcolor(white).dx))^(du)#
When converting from
When
#I=5/2int_0^picos(u)du#
Since
#I=5/2[sin(u)]_0^pi#
#I=5/2sin(pi)-5/2sin(0)#
#I=0-0#
#I=0#