How do you find the definite integral of #(x) / sqrt(4 + 3x) dx # from #[0, 7]#?
1 Answer
Oct 30, 2016
Please see the explanation section below.
Explanation:
Let
This makes
Substitute
# = 1/9 int_4^25 (u^(1/2)-4u^(-1/2)) du#
# = 1/9[2/3u^(3/2) - 8u^(1/2)]_4^25#
# = 1/9[2/3u^(3/2) - 24/3u^(1/2)]_4^25#
# = 2/27[sqrtu(u-12)]_4^25#
# = 2/27[5(13)-2(-8)]#
# = 2/27(65+16) = 2/27(81) = 6#