How do you find the derivative for #f(x) = (x^1.7 + 2) / (x^2.8 + 1)#?

1 Answer
Oct 15, 2015

#f'(x)=(-11x^3.5+17x^0.7-56x^1.8)/(10(x^2.8+1)^2)#

Explanation:

#f(x)=(x^(17/10)+2)/(x^(14/5)+1)#

#f'(x)=(17/10x^(17/10-1)*(x^(14/5)+1)-(x^(17/10)+2)*14/5x^(14/5-1))/(x^(14/5)+1)^2#

#f'(x)=(17/10x^(7/10)*(x^(14/5)+1)-(x^(17/10)+2)*14/5x^(9/5))/(x^(14/5)+1)^2#

#f'(x)=(17/10(x^(35/10)+x^(7/10))-14/5(x^(35/10)+2x^(9/5)))/(x^(14/5)+1)^2#

#f'(x)=(17/10x^(35/10)+17/10x^(7/10)-14/5x^(35/10)-28/5x^(9/5))/(x^(14/5)+1)^2#

#f'(x)=(17x^(35/10)+17x^(7/10)-28x^(35/10)-56x^(9/5))/(10(x^(14/5)+1)^2)#

#f'(x)=(-11x^(7/2)+17x^(7/10)-56x^(9/5))/(10(x^(14/5)+1)^2)#

#f'(x)=(-11x^3.5+17x^0.7-56x^1.8)/(10(x^2.8+1)^2)#