How do you find the derivative of #1/(sec x - tan x)#?
1 Answer
Jul 30, 2016
Explanation:
First, simplify the function:
#y=1/(1/cosx-sinx/cosx)=1/((1-sinx)/cosx)=cosx/(1-sinx)#
From here, use the quotient rule.
#y^'=(d/dx(cosx)*(1-sinx)-(cosx)*d/dx(1-sinx))/(1-sinx)^2#
#y^'=((-sinx)(1-sinx)-cosx(-cosx))/(1-sinx)^2#
#y^'=(-sinx+sin^2x+cos^2x)/(1-sinx)^2#
Recall that
#y^'=(1-sinx)/(1-sinx)^2#
#y^'=1/(1-sinx)#
Note that there are many different ways this can be written, but this is the simplest.