Let #y=4/sqrtx#
Replace #y# with #(y+Deltay)# and #x# with #(x+Deltax)#
#y=4/sqrtx#
#y+Deltay=4/(sqrt(x+Deltax))#
Subtract #y# and its equivalent #4/sqrtx# from both sides of the equation
#y+Deltay-y=4/(sqrt(x+Deltax))-4/sqrtx#
#Deltay=4/(sqrt(x+Deltax))-4/sqrtx#
Combine the fractions using the LCD#=sqrt(x)*sqrt(x+Delta x)#
#Deltay=4/(sqrt(x+Deltax))-4/sqrtx#
#Deltay=(4sqrtx-4sqrt(x+Deltax))/(sqrtxsqrt(x+Deltax))#
Factor out the #4#
#Deltay=(4(sqrtx-sqrt(x+Deltax)))/(sqrtxsqrt(x+Deltax))#
Multiply the numerator and denominator by #(sqrtx+sqrt(x+Deltax))#
#Deltay=(4(sqrtx-sqrt(x+Deltax)))/(sqrtxsqrt(x+Deltax))*((sqrtx+sqrt(x+Deltax)))/((sqrtx+sqrt(x+Deltax)))#
#Deltay=(4((sqrtx)^2-(sqrt(x+Deltax))^2))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))#
#Deltay=(4(x-(x+Deltax)))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))#
#Deltay=(4(x-x-Deltax))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))#
#Deltay=(4(-Deltax))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))#
Divide both sides by #Deltax#
#(Deltay)/(Deltax)=(4(-Deltax))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))*1/(Deltax)#
#(Deltay)/(Deltax)=(4(-cancel(Deltax)))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))*1/cancel(Deltax)#
#(Deltay)/(Deltax)=(4(-1))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))#
Take the limit of both sides as #Deltax rarr 0#
#dy/dx=lim_(Deltax rarr 0)(Deltay)/(Deltax)=lim_(Deltax rarr 0)(4(-1))/((sqrtxsqrt(x+Deltax))*(sqrtx+sqrt(x+Deltax)))#
#dy/dx=(4(-1))/((sqrtxsqrt(x+0))*(sqrtx+sqrt(x+0)))#
#dy/dx=(-4)/(sqrtxsqrtx*(sqrtx+sqrtx))#
#dy/dx=(-4)/(x*(2sqrtx))#
#dy/dx=(-2)/x^(3/2)#
#dy/dx=-2x^(-3/2)#
God bless....I hope the explanation is useful.