How do you find the derivative of # (7e^x)/(2e^x+1)#?

1 Answer
Jun 4, 2016

#d/(d x)[(7e^x)/(2e^x+1)]=(7 e^x*l n(e))/(2e^x+1)-(14e^(2x)*l n(e))/(2e^2+1)^2#

Explanation:

#d/(d x)[(7e^x)/(2e^x+1)]=?#

#((7e^x)^'*(2e^x+1)-(2e^x+1)^' *7e^x)/((2e^x+1)^2)#

#=[7e^x*l n (e)*(2e^x+1)- ( 2*e^x * l n (e)*7e^x)]/(2e^x+1)^2#

#d/(d x)[(7e^x)/(2e^x+1)]=(7 e^x*l n(e))/(2e^x+1)-(7e^x*2e^x*l n(e))/(2e^2+1)^2#

#d/(d x)[(7e^x)/(2e^x+1)]=(7 e^x*l n(e))/(2e^x+1)-(14e^(2x)*l n(e))/(2e^x+1)^2#