We will use the Quotient Rule and Chain Rule.
#f(x)={(3x^2+1)^(1/3) -5}^2/(5x^2+4)^(1/2)=u/v, say,#, where,
#u={(3x^2+1)^(1/3)-5}^2, &, v=(5x^2+4)^(1/2)#.
Now, #f=u/v rArr f'=(vu'-uv')/v^2...............(star)#.
#u={(3x^2+1)^(1/3)-5}^2#
#rArr u'=2{(3x^2+1)^(1/3)-5}{(3x^2+1)^(1/3)-5}'#
#=2{(3x^2+1)^(1/3)-5}{(3x^2+1)^(1/3)}'#
#=2{(3x^2+1)^(1/3)-5}{1/3(3x^2+1)^(-2/3)}(3x^2+1)'#
#=2/3*6x{(3x^2+1)^(1/3)-5}(3x^2+1)^(-2/3)#
#u'=(4x)/(3x^2+1)^(2/3){(3x^2+1)^(1/3)-5}#
#v=(5x^2+4)^(1/2)#.
#rArr v'=1/2(5x^2+4)^(-1/2)(5x^2+4)'#
#=1/2*10x(5x^2+4)^(-1/2)#
#v'=(5x)/(5x^2+4)^(1/2)#
Using all these, together with, #v^2=(5x^2+4)#, in #(star)#, we get,
#f'(x)=[(4x(5x^2+4)^(1/2))/((3x^2+1)^(2/3)){(3x^2+1)^(1/3)-5}-(5x)/(5x^2+4)^(1/2){(3x^2+1)^(1/3)-5}^2]/(5x^2+4)#
Enjoy maths.!