How do you find the derivative of #f(x)=9-1/2x# using the limit process?
1 Answer
Nov 20, 2016
Explanation:
By definition of the derivative
So with
# f'(x)=lim_(h rarr 0) ( { 9-1/2(x+h)} - { 9-1/2x} ) / h #
# :. f'(x)=lim_(h rarr 0) ( 9-1/2x-1/2h - 9+1/2x ) / h #
# :. f'(x)=lim_(h rarr 0) ( -1/2h ) / h #
# :. f'(x)=lim_(h rarr 0) -1/2 #
# :. f'(x)=-1/2 #