How do you find the derivative of #f(x)=x^3+x^2# using the limit process?
1 Answer
Nov 10, 2016
Explanation:
By definition of the derivative
So with
# f'(x) = lim_(h rarr 0) ( {(x+h)^3 + (x+h)^2 } - { x^3 + x^2} ) / h #
# :. f'(x) = lim_(h rarr 0) ( x^3+3x^2h+3xh^2+h^3 + x^2+2hx+h^2 - x^3 - x^2 ) / h #
# :. f'(x) = lim_(h rarr 0) ( 3x^2h+3xh^2+h^3 +2hx+h^2 ) / h #
# :. f'(x) = lim_(h rarr 0) ( 3x^2 + 3xh + h^2 + 2x + h ) #
# :. f'(x )= 3x^2 + 2x #