How do you find the derivative of #ln(e^x+1)#?

1 Answer
Jul 29, 2016

#e^x/(e^x+1#

Explanation:

differentiate using the #color(blue)"chain rule"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)#

let #color(blue)(u=e^x+1)rArr(du)/(dx)=e^x#

and #y=lncolor(blue)(u)rArr(dy)/(du)=1/color(blue)(u)#

substitute these values into (A) and convert #color(blue)(u)# back into x

#rArrdy/dx=1/color(blue)(u).e^x=e^x/(e^x+1)#