How do you find the derivative of the function: #arctan (cos x)#?
1 Answer
Sep 1, 2016
Explanation:
differentiate using the
#color(blue)"chain rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(arctanx)=1/(1+x^2))color(white)(a/a)|)))# let
#u=cosxrArr(du)/(dx)=-sinx# and
#y=arctanurArr(dy)/(du)=1/(1+u^2)# substitute these values into (A) changing u back to x.
#rArrdy/dx=1/(1+u^2)xx(-sinx)=(-sinx)/(1+cos^2x)#