How do you find the derivative of # x / 2 #?

2 Answers
Jun 20, 2016

#1/2#

Explanation:

Expressing #x/2=1/2x#

now differentiate using the #color(blue)"power rule"#

#d/dx(ax^n)=nax^(n-1)#

#rArrd/dx(1/2x^1)=(1xx1/2)x^(1-1)=1/2x^0=1/2xx1=1/2#

Jun 25, 2016

#1/2#

Explanation:

Let #f(x)=x/2#. Then, through the limit definition of the derivative:

#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h=lim_(hrarr0)((x+h)/2-x/2)/h#

Multiplying the fraction by #2/2#:

#f'(x)=lim_(hrarr0)((x+h)-x)/(2h)=lim_(hrarr0)h/(2h)=lim_(hrarr0)1/2=1/2#