How do you find the derivative of #(x^2+x)/sinx#?

2 Answers
Apr 5, 2017

#((x^2+x)/sinx)^'=((2x+1)sinx-(x^2+x)cosx)/sin^2x#

Explanation:

Use the quotient rule:

#((f(x))/(g(x)))^'=(g(x)f'(x)-f(x)g'(x))/(g(x))^2#

#((x^2+x)/sinx)^'=((2x+1)sinx-(x^2+x)cosx)/sin^2x#

Apr 5, 2017

#((2x+1)sinx-(x^2+x)cosx)/sin^2x#

Explanation:

differentiate using the #color(blue)"quotient rule"#

#"Given " f(x)=(g(x))/(h(x))" then"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))larr" quotient rule"#

#"here " g(x)=x^2+xrArrg'(x)=2x+1#

#"and " h(x)=sinxrArrh'(x)=cosx#

#rArrf'(x)=(sinx(2x+1)-(x^2+x)cosx)/sin^2x#