How do you find the derivative of #x/(e^(2x))#?

2 Answers
Mar 18, 2018

#(1-2x)/(e^(2x))#

Explanation:

#"differentiate using the "color(blue)"quotient rule"#

#"Given "f(x)=(g(x))/(h(x))" then"#

#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#

#g(x)=xrArrg'(x)=1#

#h(x)=e^(2x)rArrh'(x)=e^(2x)xxd/dx(2x)=2e^(2x)#

#rArrd/dx(x/(e^(2x)))#

#=(e^(2x)-2xe^(2x))/(e^(2x))^2#

#=(e^(2x)(1-2x))/(e^(2x))^2=(1-2x)/(e^(2x))#

Mar 18, 2018

#(dy)/(dx)=e^(-2x)(1-2x)=(1-2x)/(e^(2x))#

Explanation:

we can arrange this function so that we can use the product rule

#y=x/(e^(2x))#

#=>y=xe^(-2x)#

the product rule

#d/(dx)(uv)=v(du)/(dx)+u(dv)/(dx)#

#(dy)/(dx)=e^(-2x)d/(dx)(x)+xd/(dx)(e^(-2x))#

#(dy)/(dx)=e^(-2x)-2xe^(-2x)=e^(-2x)(1-2x)#