How do you find the derivative of #y=1/(2x^2+1)#?

1 Answer
Feb 6, 2018

#f'(x)=-(4x)/(2x^2+1)^2#

Explanation:

First, let's rewrite this function.
#1/(2x^2+1)=>(2x^2+1x^0)^-1#

Now, remember the power rule and the chain rule.

Power rule: #d/dx(x^n)=nx^(n-1)# where #n# is a constant.

Chain rule: If #f(x)=g(h(x))#, then #f'(x)=g'(h(x))*h'(x)#

Therefore, we have:

#f'(x)=-1(2x^2+1)^(-1-1)*d/dx(2x^2+1)#

=>#-(2x^2+1)^-2*4x^(2-1)+0x^-1#

=>#-(2x^2+1)^-2*4x^(1)+0#

=>#-1/(2x^2+1)^2*4x#

=>#-(4x)/(2x^2+1)^2#

That is our answer!