How do you find the derivative of # y= a^3 + cos^3 x #?

1 Answer
Jun 25, 2016

#-3sinxcos^2x#

Explanation:

Here the variable is x and a is a constant.

#color(orange)"Reminder:"d/dx"(constant)"=0#

Express #cos^3x=(cosx)^3#

and differentiate using the #color(blue)"chain rule and power rule"#

#d/dx(f(g(x)))=f'(g(x)).g'(x)........ (A)#
#"----------------------------------------------------"#
#f(g(x))=(cosx)^3rArrf'(g(x))=3(cosx)^2=3cos^2x#

#g(x)=cosxrArrg'(x)=-sinx#
#"----------------------------------------------------"#
Substitute these values into(A)

#rArr3cos^2x(-sinx)=-3sinxcos^2x#

So y=#a^3+cos^3x#

#rArrdy/dx=0-3sinxcos^2x=-3sinxcos^2x#