How do you find the derivative of # y= a^3 + cos^3 x #?
1 Answer
Jun 25, 2016
Explanation:
Here the variable is x and a is a constant.
#color(orange)"Reminder:"d/dx"(constant)"=0# Express
#cos^3x=(cosx)^3# and differentiate using the
#color(blue)"chain rule and power rule"#
#d/dx(f(g(x)))=f'(g(x)).g'(x)........ (A)#
#"----------------------------------------------------"#
#f(g(x))=(cosx)^3rArrf'(g(x))=3(cosx)^2=3cos^2x#
#g(x)=cosxrArrg'(x)=-sinx#
#"----------------------------------------------------"#
Substitute these values into(A)
#rArr3cos^2x(-sinx)=-3sinxcos^2x# So y=
#a^3+cos^3x#
#rArrdy/dx=0-3sinxcos^2x=-3sinxcos^2x#