How do you find the derivative of #y=arctan(secx + tanx)#?

1 Answer
Nov 9, 2016

#dy/dx=(secxtanx+sec^2x)/(1+(secx+tanx)^2)#

Explanation:

Rearranging:

#tany=secx+tanx#

Differentiating both sides, and recalling to use the chain rule on the left:

#sec^2y*dy/dx=secxtanx+sec^2x#

Solving for the derivative:

#dy/dx=(secxtanx+sec^2x)/sec^2y#

Using the Pythagorean identity:

#dy/dx=(secxtanx+sec^2x)/(1+tan^2y)#

Using #tany=secx+tanx#:

#dy/dx=(secxtanx+sec^2x)/(1+(secx+tanx)^2)#