How do you find the derivative of #Y= (e^x-e^-x)/(e^x+e^-x)#?

1 Answer
Jul 31, 2016

#(dY)/dx=4/(e^x+e^-x)^2#.

Explanation:

To find the derivative, we have to use the Quotient Rule, and, the Chain Rule, given below for ready reference :-

The Quotient Rule :- #d/dx(u/v)={v(du)/dx-u(dv)/dx}/v^2#.

By the Chain Rule, #d/dxe^(ax)=e^(ax)*d/dx(ax)=a*e^(ax)#.

As a particular case of this, we have, #d/dxe^-x=-e^-x#.

Hence,

#(dY)/dx#

#={(e^x+e^-x)d/dx(e^x-e^-x)-(e^x-e^-x)d/dx(e^x+e^-x)}/(e^x+e^-x)^2#

#={(e^x+e^-x)(e^x-(-e^-x))-(e^x-e^-x)(e^x-e^-x)}/(e^x+e^-x)^2#

#={(e^x+e^-x)^2-(e^x-e^-x)^2}/(e^x+e^-x)^2#

#=4/(e^x+e^-x)^2#.

In fact, if we use hyperbolic funs., then, since #Y=tanhx#, we can directly say that #(dY)/dx=sech^2x=4/(e^x+e^-x)^2#.