How do you find the derivative of #y=e^x*lnx#?
1 Answer
May 30, 2017
Explanation:
#"differentiate using the "color(blue)"product rule"#
#"Given " y=g(x)h(x)" then"#
#dy/dx=g(x)h'(x)+h(x)g'(x)larr" product rule"#
#"here " g(x)=e^xrArrg'(x)=e^x#
#h(x)=lnxrArrh'(x)=1/x#
#rArrdy/dx=e^x. 1/x+lnx.e^x#
#color(white)(rArrdy/dx)=e^x(lnx+1/x)#