The Derivative of a Function # f : RR to RR# at a point #x in RR,# is
denoted by #f'(x),# and, is defined by,
#lim_(t to x) (f(t)-f(x))/(t-x),# if, the Limit exists.
We have, #f(x)=4/sqrtx rArr f(t)=4/sqrtt.#
Hence, #(f(t)-f(x))/(t-x)=(4/sqrtt-4/sqrtx)/(t-x)={4(sqrtx-sqrtt)}/{sqrtt*sqrtx*(t-x)}.#
#:. lim_(t to x)(f(t)-f(x))/(t-x)=lim_(t to x){4(sqrtx-sqrtt)}/{sqrtt*sqrtx*(t-x)},#
#=lim{-4(sqrtt-sqrtx)}/{sqrtt*sqrtx*(t-x)}xx(sqrtt+sqrtx)/(sqrtt+sqrtx),#
#=lim(-4cancel((t-x)))/{sqrtt*sqrtx*cancel((t-x))*(sqrtt+sqrtx)},#
#=lim_(t to x)-4/{sqrtt*sqrtx*(sqrtt+sqrtx)},#
#=-4/{sqrtx*sqrtx*(sqrtx+sqrtx)},#
#=-4/(x*2sqrtx).#
Thus, the Limit exists, and, therefore, for #f(x)=4/sqrtx,# we have,
#f'(x)=-2*x^(-3/2); x >0..#
Enjoy Maths.!