How do you find the derivative using limits of #f(x)=x^3+x^2#?

1 Answer
Feb 11, 2017

# f'(x) = 3x^2 +2x#

Explanation:

The definition of the derivative of #y=f(x)# is

# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #

So with # f(x) = x^3+x^2 # then;

# f(x+h) = (x+h)^3+(x+h)^2 #
# \ \ \ \ \ \ \ = (x^3+3x^2h+3xh^2+h^3) +(x^2+2xh+h^2) #

And so:

# f(x+h)-f(x) = x^3+3x^2h+3xh^2+h^3 +x^2+2xh+h^2 -x^3-x^2 #
# \ \ \ \ \ \ \ = 3x^2h+3xh^2+h^3 +2xh+h^2 #

And so the derivative of #f(x)# is given by:

# f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 3x^2h+3xh^2+h^3 +2xh+h^2 ) / h #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 3x^2+3xh+h^2 +2x+h )#
# \ \ \ \ \ \ \ \ = 3x^2 +2x#