How do you find the determinant of #((1, 1, 1, 1), (1, 3, 9, 27), (1, 5, 25, 125), (1, 7, 49, 343))#?
1 Answer
Feb 25, 2016
Explanation:
This special determinant is the so-called Vandermonde Determinant, described in this source:
Vandermonde Matrix and Determinant
It is equal to
In the problem
#Det(V)=(alpha_4-alpha_3)(alpha_4-alpha_2)(alpha_4-alpha_1)(alpha_3-alpha_2)(alpha_3-alpha_1)(alpha_2-alpha_1)#
#Det(V)=(7-5)(7-3)(7-1)(5-3)(5-1)(3-1)#
#Det(V)=2*4*6*2*4*2=2^3*4^2*6=8*16*6=768#