How do you find the determinant of #((1, -2, 3, 2), (2, -1, 0, 4), (-3, 4, 0, -2), (-1, 1, 1, 5))#?
1 Answer
Explanation:
-
You can add or subtract multiples of any row or column to any other row or column without altering the determinant.
-
You can swap two rows or columns, resulting in inverting the sign of the determinant.
-
You can cyclically permute three rows or columns to leave the determinant unchanged (since this is equivalent to two swaps).
-
The determinant of an upper or lower triangular matrix is the product of the diagonal.
So:
#|(1, -2, 3, 2), (2, -1, 0, 4), (-3, 4, 0, -2), (-1, 1, 1, 5)|" "# subtract#3# times row#4# from row#1# row to get:
#= |(4, -5, 0, -13), (2, -1, 0, 4), (-3, 4, 0, -2), (-1, 1, 1, 5)|" "# swap columns#1# and#3# to get:
#= -|(0, -5, 4, -13), (0, -1, 2, 4), (0, 4, -3, -2), (1, 1, -1, 5)|" "# swap rows#1# and#4# to get:
#= |(1, 1, -1, 5), (0, -1, 2, 4), (0, 4, -3, -2), (0, -5, 4, -13)|" "# add#4# times row#2# to row#3# to get:
#= |(1, 1, -1, 5), (0, -1, 2, 4), (0, 0, 5, 14), (0, -5, 4, -13)|" "# subtract#5# times row#2# from row#4# to get:
#= |(1, 1, -1, 5), (0, -1, 2, 4), (0, 0, 5, 14), (0, 0, -6, -33)|" "# add#6/5# times row#3# to row#4# to get:
#= |(1, 1, -1, 5), (0, -1, 2, 4), (0, 0, 5, 14), (0, 0, 0, -81/5)|#
#=1 * (-1) * 5 * (-81/5) = 81#