How do you find the determinant of #((3, 4, 5, 2), (1, 0, 1, 0), (, 2, 3, 6, 3), (, 7, 2, 9, 4))#?
1 Answer
May 3, 2016
Explanation:
#((color(teal)(3),4,color(magenta)(5),2),(color(teal)(1),0,color(magenta)(1),0),(color(teal)(2),3,color(magenta)(6),3),(color(teal)(7),2,color(magenta)(9),4))=#
#-># column3#-# column1#-># column3
#=((color(gold)(3),4,2,2),(color(blue)(1),color(gold)(0),color(gold)(0),color(gold)(0)),(color(gold)(2),3,4,3),(color(gold)(7),2,2,4))#
#=1*(-1)^(2+1)*((4,2,2),(3,4,3),(2,2,4))#
#=-[64+12+12-(16+24+24)]#
#=-88+64=-24#