How do you find the determinant of #((3, 4, 5, 2), (1, 0, 1, 0), (, 2, 3, 6, 3), (, 7, 2, 9, 4))#?

1 Answer
May 3, 2016

Answer:

#-24#

Explanation:

#((color(teal)(3),4,color(magenta)(5),2),(color(teal)(1),0,color(magenta)(1),0),(color(teal)(2),3,color(magenta)(6),3),(color(teal)(7),2,color(magenta)(9),4))=#
#-># column3 #-# column1 #-># column3

#=((color(gold)(3),4,2,2),(color(blue)(1),color(gold)(0),color(gold)(0),color(gold)(0)),(color(gold)(2),3,4,3),(color(gold)(7),2,2,4))#

#=1*(-1)^(2+1)*((4,2,2),(3,4,3),(2,2,4))#
#=-[64+12+12-(16+24+24)]#
#=-88+64=-24#