How do you find the determinant of # ((5, 1, 4), (-1, f, e), (g, 0 , 1))#?
1 Answer
Nov 2, 2016
Explanation:
Expanding using row1 we have;
# = (5){(f)(1)-(0)(e)} - (1){(-1)(e)-(g)(1)} + (4){(-1)(0)-(g)(f)} #
# = (5)(f) - (1)(-e-g) + (4)(-fg) #
# = 5f+e+g-4fg #