We reduce the matrix to row echelon form
#A=((9,-4,3,5),(2,7,6,-5),(4,1,-2,0),(7,3,4,10))#
We perform
#R_2larrR_2-2/9R_1#
#=((9,-4,3,5),(0,71/9,16/3,-55/9),(4,1,-2,0),(7,3,4,10))#
#R_3larrR_3-4/9R_1#
#=((9,-4,3,5),(0,71/9,16/3,-55/9),(0,25/9,-10/3,-2/90),(7,3,4,10))#
#R_4larrR_4-7/9r_1#
#=((9,-4,3,5),(0,71/9,16/3,-55/9),(0,25/9,-10/3,-2/90),(0,55/9,5/3,55/9))#
#R_3larrR_3-25/71R-2#
#=((9,-4,3,5),(0,71/9,16/3,-55/9),(0,0,-370/71,-5/71),(0,55/9,5/3,55/9))#
#R_4larrR_4-55/71R_2#
#=((9,-4,3,5),(0,71/9,16/3,-55/9),(0,0,-370/71,-5/71),(0,0,-175/71,770/71))#
#R_4larrR_4-35/74R_3#
#=((9,-4,3,5),(0,71/9,16/3,-55/9),(0,0,-370/71,-5/71),(0,0,0,805/74))#
The determinant of the matrix is equal to the diagonal product of the matrix
#det(A)=9*71/9*(-370/71)*805/74=-5*805=-4025#