How do you find the domain and range of #(5x-3) / (2x +1)#?
1 Answer
May 31, 2017
Explanation:
#"the domain is defined for all real values of x except for"#
#"values of x which make the denominator equal zero"#
#"to find the value that x cannot be, equate the denominator"#
#"to zero and solve"#
#"solve "2x+1=0rArrx=-1/2larrcolor(red)" excluded value"#
#rArr"domain is "x inRR,x!=-1/2#
#"to find any excluded values in the range, rearrange"#
#y=(5x-3)/(2x+1)" making x the subject"#
#rArry(2x+1)=5x-3larrcolor(blue)" cross-multiplying"#
#rArr2xy+y=5x-3#
#rArr2xy-5x=-3-y#
#rArrx(2y-5)=-(3+y)#
#rArrx=-(3+y)/(2y-5)#
#"the denominator cannot equal zero"#
#"solve "2y-5=0rArry=5/2larrcolor(red)" excluded value"#
#rArr"range is " y inRR,y!=5/2#