To find the domain, what's under the square root sign is #>=0#
So,
#x/(x-6)>=0#
Let #p(x)=x/(x-6)#
We need to build a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##0##color(white)(aaaaaaaa)##6##color(white)(aaaaaaaa)##+oo#
#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##+#
#color(white)(aaaa)##x-6##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaaa)##||##color(white)(aaaa)##+#
#color(white)(aaaa)##p(x)##color(white)(aaaaa)##+##color(white)(aaaa)##-##color(white)(aaaaa)##||##color(white)(aaaa)##+#
Therefore,
#p(x)>=0# when #x in (-oo,0]uu(6,+oo)#
The domain is #x in (-oo,0]uu(6,+oo)#
#lim_(x->+-oo)p(x)=lim_(x->+-oo)x/x=1#
When #x=0#, #p(x)=0#
#lim_(x->6^+)p(x)=+oo#
So,
the range is #[0,1)uu(1,+oo)#
graph{sqrt(x/(x-6)) [-25.67, 25.65, -12.83, 12.84]}