How do you find the domain of #f(m)=-7/(m+14)# and write the domain in interval notation?

1 Answer
Oct 8, 2017

Answer:

Domain : #m | (-oo , -14) uu (-14,oo)#

Explanation:

#f(m)= -7/(m+14) # Domain (Input value of m) : function is

undefined if denominator is zero. #:. m+14 !=0# or

#m != -14 :.# Domain of #f(m)# is any real value of #m# except

#m=14#. In interval notation it may be expressed as

# (-oo , -14) uu (-14,oo)#

graph{-7/(x+14) [-80, 80, -40, 40]}
[Ans]