How do you find the domain of # f(x)=(x^2-9)/sqrt(x^2-4)#?
1 Answer
Jan 20, 2018
Explanation:
#x^2-9" is defined for all real values of x"#
#"the denominator cannot equal zero as this would make"#
#"f(x) undefined"#
#rArrx^2-4!=0#
#rArr(x-2)(x+2)!=0#
#rArrx!=+-2#
#"also "x^2-4>0#
#rArrx<-2,x>2#
#"domain is "(-oo,-2)uu(2,+oo)#
graph{(x^2-9)/(sqrt(x^2-4)) [-10, 10, -5, 5]}