How do you find the domain of #[fog](x)# given #f(x)=1/x# and #g(x)=7-x#?

1 Answer
Mar 2, 2017

Domain of #[fog](x)#: #RR-{7}#

Explanation:

If #f(color(red)x)=1/color(red)x#
then #[fog](x)=f(color(red)(g(x)))=1/color(red)(g(x))#

which is defined for all values of #color(red)(g(x))!=0#

Since #color(red)(g(color(blue)x)=7-color(blue)x#
#color(white)("XXX")color(red)(g(color(blue)x))!=0color(white)("X")rarrcolor(white)("X")color(blue)x!=7#

That is #[fog](x)# is defined for all real values of #x# except #x=7#