How do you find the equation of tangent line to the curve #(2x+3)^(1/2)# at the point x=3?
1 Answer
Apr 7, 2018
Explanation:
#"the derivative of the function at x = 3 gives the slope"#
#"of the tangent line"#
#"differentiate using the "color(blue)"chain rule"#
#"Given "y=f(g(x))" then "#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#"here "y=(2x+3)^(1/2)#
#rArrdy/dx=1/2(2x+3)^(-1/2)xxd/dx(2x+3)#
#color(white)(rArrdy/dx)=(2x+3)^(-1/2)=1/(2x+3)^(1/2)#
#"at "x=3tody/dx=1/3" and "y=3#
#"using "m=1/3" and "(x_1,y_1)=(3,3)#
#y-3=1/3(x-3)larrcolor(blue)"point-slope form"#
#y-3=1/3x-1#
#rArry-1/3x+2larrcolor(red)"equation of tangent"#