Let #(x_1, y_1)# be the center & #r# be the radius of unknown circle then as per given conditions, the distance of each of points #(7, 5)# & #(3, 7)# from center #(x_1, y_1)# will be equal to radius #r# as follows
#(x_1-7)^2+(y_1-5)^2=r^2\ .......(1)#
#(x_1-3)^2+(y_1-7)^2=r^2\ .......(2)#
Subtracting (1) from (2), we get
#2x_1-y_1-4=0\ ..............(3)#
Since, the center #(x_1, y_1)# of circle lies on the straight line: #x-3y+3=0# hence it will satisfy the equation f straight line as follows
#x_1-3y_1+3=0\ ........(4)#
solving (3) & (4), we get #x_1=3, y_1=2#
substituting the values of #x_1=3, y_1=2# in (1), we get #r^2=25#
hence, the equation of circle is
#(x-x_1)^2+(y-y_1)^2=r^2#
#(x-3)^2+(y-2)^2=25#