How do you find the equation of the line tangent to #y=(x^2)e^(x+2)# at x=2?
1 Answer
Aug 10, 2017
Explanation:
#•color(white)(x)dy/dx=m_(color(red)"tangent")" at x = a"#
#"differentiate using the "color(blue)"product rule"#
#"given "y=g(x).h(x)" then "#
#dy/dx=g(x)h'(x)+h(x)g'(x)larr" product rule"#
#g(x)=x^2rArrg'(x)=2x#
#h(x)=e^((x+2))rArrh'(x)=e^((x+2))#
#rArrdy/dx=x^2e^((x+2))+2xe^((x+2))#
#"at x = 2"#
#dy/dx=4e^4+4e^4=8e^4#
#" and " y=4e^4#
#"using "m=8e^4" and "(x_1,y_1)=(2,4e^4)#
#y-4e^4=8e^4(x-2)#
#rArry=8e^4x-12e^4#