How do you find the equation of the tangent line to graph #y=(lnx)^cosx# at the point #(e, 1)#?

1 Answer
Nov 24, 2016

The equation is #y = cose/ex - cose +1#

Explanation:

#lny = ln(lnx)^cosx#

#lny = cosxln(lnx)#

Differentiate #ln(lnx)# using the chain rule.

Let #y = lnu# and #u = lnx#.

#dy/(du) = 1/u# and #(du)/dx = 1/x#

#dy/dx = dy/(du) xx (du)/dx#

#dy/dx= 1/u xx 1/x#

#dy/dx = 1/lnx xx 1/x#

#dy/dx = 1/(xlnx)#

We can differentiate the entire function using the product rule.

#1/y(dy/dx) = -sinxln(lnx) + cosx/(xlnx)#

#dy/dx = y(-sinxln(lnx) + cosx/(xlnx))#

#dy/dx= (lnx)^cosx(-sinxln(lnx) + cosx/(xlnx))#

Now, determine the slope of the tangent by inserting your point #x= a# within the derivative.

#m_"tangent" = (lne)^cos(e)(-sin(e)ln(lne) + cose/(elne))#

#m_"tangent" = 1(cos(e))/e#

#m_"tangent" = cose/e#

We now determine the equation of the tangent line.

#y - y_1 = m(x- x_1)#

#y - 1 = cose/e(x - e)#

#y = cose/ex - cose +1#

Hopefully this helps!