#lny = ln(x^sinx)#
#lny= sinxlnx#
Now, use the product rule and implicit differentiation to find the derivative.
#1/y(dy/dx) = (cosx xx lnx + sinx xx 1/x)#
#1/y(dy/dx) = cosxlnx + sinx/x#
#dy/dx = (cosxlnx + sinx/x)/(1/y)#
#dy/dx = y(cosxlnx + sinx/x)#
Since #y = x^sinx#:
#dy/dx = x^sinx(cosxlnx + sinx/x)#
All that is left to do is find the slope of the tangent. This can be found by inserting #x = a# into the derivative, since the derivative represents the instantaneous rate of change of the function.
#m_"tangent" = (pi/2)^(sin(pi/2))(cos(pi/2)ln(pi/2) + (sin(pi/2))/(pi/2))#
#m_"tangent" = pi/2(0 + 1/(pi/2))#
#m_"tangent" = pi/2(0 + 2/pi)#
#m_"tangent" = 1#
Now, we use point-slope form to find the equation of the line.
#y - y_1 = m(x - x_1)#
#y- pi/2 = 1(x- pi/2)#
#y - pi/2 = x - pi/2#
#y = x - pi/2 + pi/2#
#y = x#
Hopefully this helps!