How do you find the exact functional value cos (-11/12 pi) using the cosine sum or difference identity?

1 Answer
Aug 19, 2015

Find #cos ((-11pi)/12)#

Ans: #- sqrt(2 + sqrt3)/2#

Explanation:

On the trig unit circle,

#cos ((-11pi)/12) = cos (pi/12 - (12pi)/12) = cos (pi/12 - pi) = #
#= -cos (pi/12)#
Find #cos (pi/12)#. Call #cos (pi/12) = cos t#
Apply the trig identity: #cos 2t = 2cos^2 t - 1#

#cos 2t = cos pi/6 = sqrt3/2 = 2cos^2 t -1#
#cos^2 t = (2 + sqrt3)/4#
#cos t = cos (pi/12) = sqrt(2 + sqrt3)/2#
Since the arc (--11pi)/12 is located in Quadrant III,
#cos ((-11pi)/12) = - cos (pi/12) = - sqrt(2 + sqrt3)/2#